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Abstract. We calculate exactly the diffusion constant associated with the fluctuations of the
current for the partial asymmetric exclusion model on a ring with an arbitrary number of particles
and holes. We also give the diffusion constant of a tagged particle on that ring. Our approach
extends, using the deformed harmonic oscillator algebra, a result already known for the fully
asymmetric case. In the limit of weak asymmetry, we extract from our exact expression the
crossover between the Edwards–Wilkinson and the Kardar–Parisi–Zhang equations in(1+ 1)
dimensions.

1. Introduction

The one-dimensional asymmetric exclusion process (ASEP) is a lattice version of
the Kardar–Parisi–Zhang (KPZ) equation [1–3]. It has been extensively studied by
mathematicians [4–9] and physicists [10–20] as one of the simplest examples of a system
out of equilibrium. The process describes particles that hop independently with hard-core
exclusion along a one-dimensional lattice with a bias which mimics an external driving
force. It is a simple case of a driven lattice gas [21] related to the hopping conductivity
of superionic conductors [22] and to queuing problems [23]. One can also map it on the
problem of directed polymers in a random medium [2, 3] in(1+ 1) dimensions.

In the steady state, all the configurations of the exclusion model on a periodic lattice
have equal probabilities [24]. This corresponds to the fact that the stationary measure of the
one-dimensional KPZ equation is the Brownian ‘free-field’ measure [25]. The calculations
of equal time correlation functions in the steady state are therefore very easy.

Unequal time properties, even in the steady state, are much more difficult to obtain
[26, 27]. The gap between the largest two eigenvalues of the master equation that governs
the time evolution of the ASEP has been computed by the Bethe ansatz [28–30] giving 3/2
for the dynamical exponent of the one-dimensional KPZ equation. A different approach
based on a matrix ansatz [31–34], initially used for the steady state of systems with open
boundaries, has been extended to obtain some unequal time correlation functions like the
diffusion constant of tagged particles on a ring [35] or the fluctuations of the current of a
chain with open boundaries [36].

In the present paper we give the exact expression of the fluctuations of the total current
through a bond for the partially asymmetric exclusion process on a ring. These fluctuations
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1032 B Derrida and K Mallick

grow linearly with time and the constant of proportionality1 can be interpreted as a diffusion
constant. Up to a simple factor,1 is also the diffusion constant of a tagged particle on a
ring.

Our formula of1 gives in particular the scaling function describing the crossover
between the linear Edwards–Wilkinson (EW) model [37] and the nonlinear KPZ equation
for the fluctuations of the height of a growing interface.

Let us first recall the dynamics of the one-dimensional exclusion model on a periodic
lattice ofL sites withP particles andH holes (withL = P +H ). Each sitei (16 i 6 L)
is either occupied by a particle (τi = 1) or is empty (τi = 0). The lattice has periodic
boundary conditions meaning thati ≡ i +L. The system evolves according to a stochastic
dynamical rule: during each infinitesimal time step dt , the only transitions allowed for the
bond(i, i + 1) are

10→ 01 with rate 1

01→ 10 with ratex. (1)

The parameterx is positive and it measures the strength of the driving force. Forx = 1
the system is symmetric whereas forx = 0 (or x = ∞) it reduces to the totally asymmetric
case [35].

In the long time limit, the system reaches a steady state in which all configurationsC
have the same weight [24]

p(C) =
(
P +H
P

)−1

= P !H !

(P +H)! . (2)

Here we consider the current through a ‘marked’ bond, for instance the bond(L, 1). If Yt
is the net number of particles having crossed that bond between time 0 and timet (i.e. the
number of particles having crossed that bond from left to rightminus those having crossed
from right to left),

lim
t→∞

1

t
〈Yt 〉 → J (3)

where the expression of the steady state currentJ follows easily from (2)

J = (1− x) PH

(P +H)(P +H − 1)
. (4)

In a similar way one expects (and in fact one can prove [36]) that in the long time limit

〈Y 2
t 〉 − 〈Yt 〉2

t
→ 1. (5)

The main result of the present paper is the following exact formula

1 = 2
(1− x)
L(L− 1)

∞∑
n=1

n2 1+ xn
1− xn

(P !)2(H !)2

(P + n)!(P − n)!(H + n)!(H − n)! (6)

for the fluctuations of the current through a bond on a ring ofL sites withP particles
andH = L − P holes (here, we use the convention thatk! = ∞ for k 6 −1 so that
the sum (6) has only a finite number of terms with no contribution forn > min(P,H)).
Sections 2, 3 and 4 are devoted to the derivation of (6) and in section 5, we will see how
this expression (6) leads forx close to 1 to the crossover between the symmetric process
and the asymmetric process, i.e. between the EW and the KPZ equations [30, 38].

The knowledge of1 also gives the diffusion constant of a tagged particle on a ring. If
one callsXt the position of a tagged particle (which is, in all respects, equivalent to the
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otherP − 1 particles), this position fluctuates about its average [〈X2
t 〉 − 〈Xt 〉2 ' 1tagt ] and

the corresponding diffusion constant1tag is related to1 by

1tag= 1
(
H + P
P

)2

.

This follows from the fact that, due to the hard core repulsion, all particles perform exactly
the same number of rotations' Yt/P and that each time a particle performs a rotation it
covers a distanceH + P .

2. The master equation

In this section, we recall [35, 36] how, in the calculation of1, the master equation which
governs the dynamics can be reduced to a system of

(
P+H
P

)
inhomogeneous linear equations.

Let us denote byPt(C, Y ) the probability of finding at timet the system in a
configurationC of particles and withYt = Y (Yt is the algebraic number of particles
having gone through the marked bond between time 0 and timet). The master equation
that governs the time evolution ofPt(C, Y ) has the following form

d

dt
Pt (C, Y ) =

∑
C ′
M0(C, C ′)Pt (C ′, Y )+M1(C, C ′)Pt (C ′, Y − 1)+M−1(C, C ′)Pt (C ′, Y + 1)

−
[∑
C ′
M0(C ′, C)+M1(C ′, C)+M−1(C ′, C)

]
Pt(C, Y ) (7)

whereM0(C, C ′) is the rate of transition from a configurationC to a configurationC ′
obtained by moving a particle that does not cross the marked bond,M1(C, C ′) (respectively
M−1(C, C ′)) is the rate of transition from a configurationC to a configurationC ′ obtained
by moving a particle that does cross the marked bond in the positive (respectively negative)
direction.

Multiplying both sides of (7) byY or Y 2 and summing overC and Y leads to the
evolution equation for the first two moments ofYt
d

dt
〈Yt 〉 =

∑
C,C ′

[M1(C, C ′)−M−1(C, C ′)]pt(C ′) (8)

d

dt
〈Y 2
t 〉 = 2

∑
C,C ′

[M1(C, C ′)−M−1(C, C ′)]qt (C ′)+
∑
C,C ′

[M1(C, C ′)+M−1(C, C ′)]pt(C ′) (9)

where

pt(C) =
∑
Y

Pt (C, Y ) qt (C) =
∑
Y

YPt (C, Y ).

It has been shown [35, 36] that in the long time limitpt(C) andqt (C) have the following
asymptotic behaviour:

pt(C)→ p(C) qt (C)− J tp(C)→ r(C). (10)

If one substitutes the asymptotics (3), (5) and (10) in (8) and (9) one finds

J =
∑
C,C ′

[M1(C, C ′)−M−1(C, C ′)]p(C ′) (11)

which allows one to recover (4), and as

1 = lim
t→∞

[
d

dt
〈Y 2
t 〉 − 2

d〈Yt 〉
dt

∑
C
qt (C)

]
(12)
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one finds

1 = (1+ x) PH

(P +H)(P +H − 1)
+ 2

∑
C,C ′

[M1(C, C ′)−M−1(C, C ′)]r(C ′)− 2J
∑
C
r(C).

(13)

Thus to calculate1 we need to knowr(C). Multiplying both sides of equation (7) by
Y and summing overY gives the time evolution ofqt (C). After substituting the asymptotic
behaviour (10) in the expression thus obtained, one finds that ther(C) satisfy the following
system of linear equations∑
C ′
M(C, C ′)r(C ′)−

(∑
C ′
M(C ′, C)

)
r(C) = Jp(C)−

∑
C ′

[M1(C, C ′)−M−1(C, C ′)]p(C ′)

(14)

whereM = M1 +M0 +M−1. Hence, in order to compute1 from (13), one has to solve
the system (14). This is done in section 3, where ther(C) solutions of (14) are obtained
using a matrix ansatz. Then one has to perform the two sums which appear in (13) and this
is done in section 4.

3. The matrix method

The method we use to solve (14) is an extension of what was done in [35]. We associate
with each configurationC a product of operators. For brevity, the product of operators
associated with configurationC is also denoted byC. In the product there areP operators
representing particles, which we note byD, andH operators representing holes, which we
denote byE. Thus

C =
L∏
i=1

[τiD + (1− τi)E] (15)

with τi = 0 if site i is empty orτi = 1 if site i is occupied inC.
Assume that the operatorsD andE satisfy [31, 32, 39, 40]

DE − xED = (1− x)(D + E) (16)

or if we introduceδ andε such that

D = 1+ δ and E = 1+ ε (17)

thenδ andε satisfy the deformed harmonic oscillator algebra [41, 42], namely

δε − xεδ = 1− x. (18)

Using (17) and (18) repetitively, one can always re-order theε andδ and write (15) as

C =
∑
m,n

A(C;m, n)εmδn. (19)

This defines the coefficientsA(C;m, n). In appendix A we show that ifr(C) are given by

r(C) =
∑
m,n

A(C;m, n)r(m, n) (20)

with

r(m, n) = 0 if n 6= m
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and

r(n, n) = −
(
P +H
P

)−2 n∑
i=1

1

1− xi (21)

thenr(C) are solutions of (14).

4. Calculation of the diffusion constant

The expression (13) of1 can be rewritten

1 = (1+ x) PH

(P +H)(P +H − 1)
+ 2

∑
C ′

[r(EC ′D)− xr(DC ′E)] − 2J
∑
C
r(C) (22)

where the sum overC ′ is over all the configurations withP−1 particles andH−1 holes and
the sum overC is over all the configurations withP particles andH holes. The calculation
of the two sums which appear in (22) is the last difficulty we have to overcome to obtain
1.

By subtracting (A9) from (A8) one can see that

2[r(EC ′D)− xr(DC ′E)] = (1− x)[r(DC ′)+ r(C ′D)+ r(EC ′)+ r(C ′E)] − (1+ x)p(C)
and using this relation into (22) leads to a simpler formula for1:

1 = (1− x)
∑
C ′

[r(DC ′)+ r(C ′D)+ r(EC ′)+ r(C ′E)] − 2J
∑
C
r(C). (23)

As explained in appendix B, using generating functions and the fact thatr(C) is linear, the
two sums which appear in (23) can be expressed in terms of the scalarsr((δ + ε)2l), and
this leads to

1 = 2(1− x)
min(P,H)∑
l=0

(P +H)!
(2l)!(P − l)!(H − l)!

[PH − l(P +H)]
(P +H)(P +H − 1)

r((δ + ε)2l). (24)

Lastly, ther((δ + ε)2l) are shown in appendix C to be given by

r((δ + ε)2l) = −
(
P +H
P

)−2 l∑
n=1

(
2l
l + n

)
1+ xn
1− xn (25)

so that (24) becomes

1 = 2(1− x)
L(L− 1)

(
P +H
P

)−2 min(P,H)∑
n=1

1+ xn
1− xn

min(P,H)∑
l=n

(P +H)![ l(P +H)− PH ]

(P − l)!(H − l)!(l − n)!(l + n)! .

(26)

If we replace [l(P +H)−PH ] by n2+ (l− n)(l+ n)− (P − l)(H − l) in (26), we obtain
three terms
min(P,H)∑
l=n

(P +H)![ l(P +H)− PH ]

(P − l)!(H − l)!(l − n)!(l + n)! = n
2

min(P,H)∑
l=n

(P +H)!
(P − l)!(H − l)!(l − n)!(l + n)!

+
min(P,H)∑
l=n+1

(P +H)!
(P − l)!(H − l)!(l − n− 1)!(l + n− 1)!

−
min(P,H)∑
l=n

(P +H)!
(P − 1− l)!(H − 1− l)!(l − n)!(l + n)! .
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The last two terms cancel (by just shifting the variablel by one in the last sum); moreover,
using the following identity

min(P,H)∑
l=n

(P +H)!
(P − l)!(H − l)!(l − n)!(l + n)! =

(
P +H
P + n

)(
P +H
H + n

)
(which can be proved by calculating the coefficient ofzP−Hy−2n in both sides of
(z + z−1 + y + y−1)P+H = (z + y)P+H (1 + z−1y−1)P+H ), one ends up with our final
expression for1

1 = 2
(1− x)
L(L− 1)

min(P,H)∑
n=1

n2 1+ xn
1− xn

(P !)2(H !)2

(P + n)!(P − n)!(H + n)!(H − n)!
(which is identical to (6) with the convention that(−p)! = ∞ for p > 1).

5. Scaling form and crossover between the EW and the KPZ equation

From (6), we can find the scaling form of the diffusion constant when the sizeL of the
system becomes large and the asymmetry becomes weak (x → 1). If we write ρ = P/L,
1− ρ = H/L andx = exp(−f ) with f small (hencef ∼ 1− x), we obtain with the help
of the Stirling formula

1 ' 2f

L2

∑
n>1

n2 coshnf/2

sinhnf/2
exp

( −n2

Lρ(1− ρ)
)
. (27)

If we choose a scaling such thatf ∼ L−1/2, or more precisely if we defineφ by

φ = f
√
Lρ(1− ρ)

2
(28)

one finds that (27) becomes, in the limitL→∞, f → 0 with fixedφ

1 ' 4ρ(1− ρ)
L

φ

∫ ∞
0

dy exp(−y2)
y2

tanh(φy)
(29)

and this confirms the scaling form suggested in [43] by a perturbative expansion around
x = 1.

We are going now to see how our exact result (29) for the exclusion model can be
re-expressed in terms of the KPZ equation. The exclusion model can be mapped onto a
growth process [44] in(1+1) dimensions: one defines for each sitei a heighthi(t) at time
t by

hi(t)− hi−1(t) = 1− 2τi(t) (30)

and the stochastic dynamics of the exclusion model induces a growth rule for the heights
hi(t). Namely, when a particle jumps from sitei to site i + 1, the heighthi(t) increases
by 2, and when a particle jumps from sitei + 1 to sitei, the heighthi(t) decreases by 2.
Hence, random jumps of particles mimic a stochastic deposition–evaporation process. With
this mapping, the heighthL(t) at time t is the integrated current through the bond(L, 1)

hL(t)− hL(0) = 2Yt . (31)

Due to the conservation of the total number of particles in the exclusion process, we have
tilted periodic boundary conditions for the heights (obtained by summing equation (30) oni)

hi+L(t)− hi(t) = (1− 2ρ)L = κL (32)

where the parameterκ = 1− 2ρ represents the tilt.
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In the continuum limit wherei becomes a continuous variablez, this growth model is
expected to be described by the KPZ equation

∂h

∂t
= ν ∂

2h

∂z2
+ λ

2

(
∂h

∂z

)2

+ η(z, t) (33)

with tilted boundary conditions(h(z + L, t) = h(z, t)+ κL).
In (33), η(z, t) is a Gaussian white noise with zero mean and covariance

〈η(z, t)η(z′, t ′)〉 = Dδ(z − z′)δ(t − t ′). (34)

We recall [45] that in order to be well defined the KPZ equation contains an implicit short
length cut-off; usually equation (33) is rewritten in Fourier space and only modes with a
wavenumber less than a ultraviolet cut-off are retained. Here we shall take this cut-off as
equal to 1.

If the growth model is well described by the KPZ equation [46], one should be able to
express the coefficients(D, ν, λ) in (33) in terms of the parametersx andρ of the exclusion
process. This can be done [47] by matching some physical quantities that can be calculated
exactly in both models.

For the discrete growth process (30) the stationary distribution of the heights differences
is given by (2). Therefore, if 1� j − i � L, we have in the long time limit

〈[hj − hi ]2〉 − 〈hj − hi〉2 = 4ρ(1− ρ)(j − i). (35)

The fluctuations of the mean height of the interface for the symmetric process(x = 1) are
well known [24] and they can be computed from (29) by takingφ = 0. Then

〈[hL(t)− hL(0)]2〉 − 〈hL(t)− hL(0)〉2 = 4[〈Y 2
t 〉 − 〈Yt 〉2] ' 8ρ(1− ρ)

L
t. (36)

Finally, from the formula for the current (4) and (31), the speed of the interface is

1

t
〈hL(t)〉 → 2(1− x)ρ(1− ρ) L

L− 1
= (1− x)(1− κ

2)

2

L

L− 1
(37)

whereκ is defined in (32).
The stationary measure of the KPZ equation is known [25] (it is Gaussian and does

not depend on the nonlinearity coefficientλ). Therefore, all the equal-time averages in the
stationary state can be computed. For instance, one obtains that in the long time limit the
fluctuations of the height difference between two pointsx andy such that 1� y − x � L

are given by

〈[h(y, t)− h(x, t)]2〉 − 〈h(y, t)− h(x, t)〉2 = D

2ν
(y − x). (38)

The fluctuations of the mean height of the interface in the linear case(λ = 0) can also be
explicitly computed by just integrating (33) on the range 0 toL. One obtains

〈[h(L, t)− h(L, 0)]2〉 − 〈h(L, t)− h(L, 0)〉2 ' D

L
t. (39)

The coefficientλ of the nonlinearity is related to the dependence of the growth rate on the
tilt [45]; this can be seen by imposing a tilt to the interfaceh(z, t) → h(z, t) + κz and
computing how the average speedv∞ = 〈∂h/∂t〉 for an infinite system varies withκ; one
obtains that

∂2v∞
∂κ2

(0) = λ. (40)
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It should be noted that to obtain a finite expression for the speedv∞ one has to introduce a
short length cut-off. However, the second derivative (40) does not depend on this cut-off.

It is now possible to establish a correspondence between the KPZ equation and the
exclusion model by comparing expressions (35)–(37) with expressions (38)–(40):

D = 8ρ(1− ρ)
ν = 1 (41)

λ = −(1− x).

Remark. It has been shown [48] that the finite size correction to the growth velocity is
given by

vL − v∞ = − Dλ
4νL

to the first order in 1/L for the KPZ equation. If this finite size correction is extracted from
(37) the following relation is obtained

− Dλ
4νL
= 2(1− x)ρ(1− ρ) 1

L

which confirms (41).

Let us now consider the fluctuations of the height above siteL for the general asymmetric
growth process. We define

W(L, t) = 〈[hL(t)− hL(0)]2〉 − 〈hL(t)− hL(0)〉2 = 4[〈Y 2
t 〉 − 〈Yt 〉2]. (42)

To compute the same quantity from the KPZ equation, one can use dimensionless
variables [3, 49] obtained by rescaling time, space and height as follows:

t = ν5

λ4D2
T z = ν3

λ2D
Z h = ν

λ
H. (43)

With these rescalings, the KPZ equation does not contain any explicit parameter any more

∂H

∂T
= ∂2H

∂Z2
+ 1

2

(
∂H

∂Z

)2

+ η(Z, T ) (44)

andη(Z, T ) is a Gaussian white noise with zero mean and covariance

〈η(Z, T )η(Z′, T ′)〉 = δ(Z − Z′)δ(T − T ′).
It is then possible to write, just by dimensional analysis,

W(L, t) =
(ν
λ

)2
w

(
λ2DL

ν3
,
λ4D2t

ν5

)
= Dt

L
F

(
λ2DL

ν3
,
νt

L2

)
(45)

whereF is a scaling function characteristic of the KPZ equation.
For a finite system,W is linear in time in the long time limit. This means that the

functionF does not depend on the variableνt/L2 any more, so that

F

(
λ2DL

ν3
,
νt

L2

)
→ F(g,∞) when t →∞ (46)

with g = λ2DL

ν3
. (47)
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The scaling functionF(g,∞) measures the fluctuations of the height in the KPZ equation as
a function of the dimensionless variableg which characterizes the strength of the nonlinearity
in the KPZ equation. Hence, in the long time limit

W(L, t) = Dt

L
F(g,∞). (48)

Using (41) one finds that

g = λ2DL

ν3
= 8(1− x)2ρ(1− ρ)L = 32φ2 (49)

where the variableφ has been defined in (28). If we compare (49) to (29) we obtain for
the scaling functionF(g,∞)

F (g,∞) =
√
g

2
√

2

∫ ∞
0

dy exp(−y2)
y2

tanh((
√
g/
√

32)y)
. (50)
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Appendix A. Proof that equations (19), (20) and (21) solve (14)

In this appendix, we show that whenδ andε satisfy (18)

δε − xεδ = 1− x (A1)

r(C) given by equations (19), (20) and (21) are solutions of (14).
Trying to extend the solution given in [35], we make the hypothesis thatr(C) will

be linear functionals on the algebra generated by 1 (the identity operator),D andE (or
equivalently by 1,δ and ε). This means that for arbitrary numbersλ1 and λ2 and for
arbitrary operatorsB1 andB2 (consisting of sums of products ofDs andEs), one has

r(λ1B1+ λ2B2) = λ1r(B1)+ λ2r(B2).

As a consequence, one has from (16)

r(B1DEB2)− xr(B1EDB2) = (1− x)[r(B1DB2)+ r(B1EB2)]. (A2)

Another consequence of the fact thatr(C) are linear is that if

C =
∑
m,n

A(C;m, n)εmδn (A3)

then

r(C) =
∑
m,n

A(C;m, n)r(εmδn). (A4)

Note that the quantitiesak(P,H) defined by

ak(P,H) =
∑
m,n

A(C;m, n)δm−n,k (A5)

do not depend onC itself but depend only on the numberP of particles andH of holes in
C:

ak(P,H) =
(
H + P
H − k

)
. (A6)
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(This can be easily shown by choosingD = 1+ z−1 andE = 1+ z wherez is a number,
that is δ = z−1 and ε = z. For this very simple choice,δ and ε satisfy (A1) and, as with
this choiceD andE commute, (A3) becomes

(1+ z−1)P (1+ z)H =
∑
m,n

A(C;m, n)zm−n

which leads immediately to (A6).)
By using the algebra (16) and (A2) the system (14) that we have to solve reduces

to one of the following four cases depending on the occupation numbers of the two sites
surrounding the marked bond (the rule (A2) generates simplifications in the bulk similar to
those described in [32]):
• For τ1 = 1 andτL = 1 (i.e. C = DC ′D, with P − 2 particles andH holes inC ′)

Jp(C) = (1− x)[r(DC ′)− r(C ′D)]. (A7)

• For τ1 = 1 andτL = 0 (i.e. C = DC ′E, with P − 1 particles andH − 1 holes inC ′)

Jp(DC ′E)− p(EC ′D) = r(EC ′D)− xr(DC ′E)− (1− x)[r(DC ′)+ r(C ′E)]. (A8)

• For τ1 = 0 andτL = 1 (i.e. C = EC ′D, with P − 1 particles andH − 1 holes inC ′)

Jp(EC ′D)+ xp(DC ′E) = xr(DC ′E)− r(EC ′D)+ (1− x)[r(EC ′)+ r(C ′D)]. (A9)

• For τ1 = 0 andτL = 0 (i.e. C = EC ′E, with P particles andH − 2 holes inC ′)

Jp(C) = (1− x)[r(C ′E)− r(EC ′)]. (A10)

A simple consequence of (A1) is that form > 1

δεm − xmεmδ = (1− xm)εm−1 δmε − xmεδm = (1− xm)δm−1. (A11)

Then if one defines

s(m, n) = r(εmδn)− r(εm+1δn+1) (A12)

one obtains by substituting (A3) and (A4) into (A7)–(A10), and by using (2)
• for C ′ havingP − 2 particles andH holes

J

(
P +H
P

)−1

= (1− x)
∑
m,n

A(C ′;m, n)(1− xm)s(m− 1, n) (A13)

• for C ′ havingP − 1 particles andH − 1 holes

(J − 1)

(
P +H
P

)−1

= −
∑
m,n

A(C ′;m, n){(1− xm+n+2)s(m, n)+ (1− xm)s(m− 1, n)

+(1− xn)s(m, n− 1)+ x(1− xm)(1− xn)s(m− 1, n− 1)} (A14)

• for C ′ havingP − 1 particles andH − 1 holes

(J + x)
(
P +H
P

)−1

=
∑
m,n

A(C ′;m, n){(1− xm+n+2)s(m, n)+ x(1− xm)s(m− 1, n)

+x(1− xn)s(m, n− 1)+ x(1− xm)(1− xn)s(m− 1, n− 1)} (A15)

• for C ′ havingP particles andH − 2 holes

J

(
P +H
P

)−1

= (1− x)
∑
m,n

A(C ′;m, n)(1− xn)s(m, n− 1). (A16)
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We are now going to show that the choice (21) forr(m, n) ≡ r(εmδn) does solve
(A13)–(A16). From (A12) one obtains

s(m, n) = r(m, n)− r(m+ 1, n+ 1) =
(
P +H
P

)−2 1

1− xn+1
δn,m (A17)

and (A13)–(A16) become using (A5)

J

(
P +H
P

)
= (1− x)a1(P − 2, H)

(J − 1)

(
P +H
P

)
= −(1+ x)a0(P − 1, H − 1)− a1(P − 1, H − 1)

−a−1(P − 1, H − 1)

(J + x)
(
P +H
P

)
= (1+ x)a0(P − 1, H − 1)+ xa1(P − 1, H − 1)

+xa−1(P − 1, H − 1)

J

(
P +H
P

)
= (1− x)a−1(P,H − 2).

These equalities follow easily when the explicit expressions (4) and (A6) ofJ and of the
ak are used. This proves that equations (19), (20) and (21) solve (14).

Appendix B. Calculation of the two sums which appear in (23)

The sum
∑
C r(C) over all the configurations with fixed numbersP of particles andH of

holes is the coefficient ofλPµH in the generating functionr((λD+µE)P+H ). AsD = 1+δ
andE = 1+ ε, one can write

r((λD + µE)P+H ) =
P+H∑
k=0

(
P +H
k

)
(λ+ µ)P+H−kr((λδ + µε)k). (B1)

From (21) where the expressions ofr(m, n) = r(εmδn) are given, we know that the only
non-zero terms inr((λδ + µε)k) are those that contain the same number ofδ and of ε.
Consequently, in (B1), the only non-zero terms correspond tok even. Therefore, fork = 2l
one hasr((λδ + µε)2l) = (λµ)lr((δ + ε)2l).

Formula (B1) then becomes

r((λD + µE)P+H ) =
E[(P+H)/2]∑

l=0

(
P +H

2l

)
(λ+ µ)P+H−2l(λµ)lr((δ + ε)2l) (B2)

whereE[(P +H)/2] is the integer part of(P +H)/2. From (B2) the coefficient ofλPµH

can be extracted easily:

∑
C
r(C) =

min(P,H)∑
l=0

(
P +H

2l

)(
P +H − 2l
P − l

)
r((δ + ε)2l). (B3)

In a similar manner, the term
∑
C ′ [r(DC ′)+r(C ′D)+r(EC ′)+r(C ′E)] is the coefficient

of λP−1µH−1 in the generating function

r((λD + µE)P+H−2(D + E))+ r((D + E)(λD + µE)P+H−2).
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This expression can be written

P+H−2∑
k=0

(
P +H − 2

k

)
(λ+ µ)P+H−2−k(4r((λδ + µε)k)+ r((λδ + µε)k(δ + ε))

+r((δ + ε)(λδ + µε)k)). (B4)

The coefficient ofλP−1µH−1 can be extracted from the first term on the right-hand side
of (B4) exactly as above. As for the two remaining terms, we see that the only non-zero
terms inr((λδ + µε)k(δ + ε)) and in r((δ + ε)(λδ + µε)k) correspond tok odd; one has
for k = 2l − 1, using the same argument as above

r((λδ + µε)2l−1(δ + ε)) = λl−1µlr((δ + ε)2l−1δ)+ λlµl−1r((δ + ε)2l−1ε) (B5)

and

r((δ + ε)(λδ + µε)2l−1) = λl−1µlr(δ(δ + ε)2l−1)+ λlµl−1r(ε(δ + ε)2l−1). (B6)

We now use the identities

r(ε(δ + ε)2l−1) = r((δ + ε)2l−1δ) (B7)

r(δ(δ + ε)2l−1) = r((δ + ε)2l−1ε) (B8)

(which follow from the fact that using (18) one can always write(δ + ε)k =∑
m,n a(k;m, n)εmδn with symmetric coefficientsa(k;m, n), that is a(k;m, n) =

a(k; n,m)) and rewrite the last two terms in (B4) as

r((λδ + µε)2l−1(δ + ε))+ r((δ + ε)(λδ + µε)2l−1) = (λl−1µl + λlµl−1)r((δ + ε)2l). (B9)

Now the calculation can readily be completed and we obtain∑
C ′

[r(DC ′)+ r(C ′D)+ r(EC ′)+ r(C ′E)]

=
min(P−1,H−1)∑

l=0

{
4

(
P +H − 2

2l

)(
P +H − 2l − 2
P − 1− l

)
+
(
P +H − 2

2l − 1

)(
P +H − 2l
P − l

)}
r((δ + ε)2l). (B10)

Substituting (B3) and (B10) in (23) leads to the expression (24) of the diffusion constant
in terms of the scalarsr((δ + ε)2l).

Appendix C. Proof of identity (25)

From the deformed harmonic oscillator algebra (18)

δε − xεδ = 1− x (C1)

and its consequences (A11), one can show by recursion that(δ + ε)n can be written as

(ε + δ)n =
E[n/2]∑
p=0

Qn
n−2p(x)

n−2p∑
i=0

[
n− 2p
i

]
εiδn−2p−i (C2)

(by re-orderingε andδ) whereE[n/2] is the integer part ofn/2, the polynomialsQn
k satisfy

the recursion formula

Qn+1
k (x) = Qn

k−1(x)+ (1− xk+1)Qn
k+1(x)
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(with Q0
k = δk,0) and the deformed binomial coefficients (called Gaussian binomials) are

defined by [
n

k

]
= (1− xn)(1− xn−1) . . . (1− xn−k+1)

(1− xk)(1− xk−1) . . . (1− x) .

These Gaussian binomials satisfy identities similar to those of usual binomials[
n+ 1
k

]
= xk

[
n

k

]
+
[

n

k − 1

]
[
n

k

]
=
[

n

n− k
]
.

We adopt the convention that [n
k
] = 0 whenevern < 0 or k > n.

Formula (C2) is valid for any choice ofδ and ε that satisfies the algebra (C1). In
particular, one can chooseε = z andδ = 1/z wherez is a real variable. Then (C2) reduces
to

(z + 1/z)n =
E[n/2]∑
p=0

Qn
n−2p(x)

n−2p∑
i=0

[
n− 2p
i

]
z2i+2p−n (C3)

and by identifying the coefficients of the powers ofz on both sides of (C3) one obtains(
n

j

)
=

E[n/2]∑
p=0

Qn
n−2p(x)

[
n− 2p
j − p

]
for 06 j 6 n. (C4)

If n is even (n = 2l), the preceeding formula becomes(
2l
l + j

)
=

l∑
p=j

Q2l
2p(x)

[
2p
p + j

]
for 06 j 6 l. (C5)

We can now use the ordering identity (C2) to computer((ε + δ)2l)

r((ε + δ)2l) =
l∑

p=0

Q2l
2p(x)

2p∑
i=0

[
2p
i

]
r(εiδ2p−i ) (C6)

which becomes using (21)

r((ε + δ)2l) = −1(
P +H
P

)2

l∑
p=1

Q2l
2p(x)

[
2p
p

] p∑
j=1

1

1− xj . (C7)

Our goal is to prove (25)

r((δ + ε)2l) = −1(
P +H
P

)2

l∑
j=1

1+ xj
1− xj

(
2l
l + j

)
(C8)

which can be rewritten using (C5) as

r((δ + ε)2l) = −1(
P +H
P

)2

l∑
j=1

1+ xj
1− xj

l∑
p=j

Q2l
2p(x)

[
2p
p + j

]

= −1(
P +H
P

)2

l∑
p=1

Q2l
2p(x)

p∑
j=1

[
2p
p + j

]
1+ xj
1− xj . (C9)
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So far we have proved (C7) and we would like to prove (C9). We are now going to
show that (C7) and (C9) are indeed the same due to the following identity on deformed
binomials [

2p
p

] p∑
j=1

1

1− xj =
p∑
j=1

[
2p
p + j

]
1+ xj
1− xj . (C10)

This formula can be established by induction onp. The casep = 1 can be checked
directly. If the formula is true forp, we are going to show that it remains true forp + 1:[

2p + 2
p + 1

] p+1∑
j=1

1

1− xj =
p+1∑
j=1

[
2p + 2
p + 1+ j

]
1+ xj
1− xj . (C11)

Let us multiply (C11) by the factor(1 − x2p+2)(1 − x2p+1)/(1 − xp+1)(1 − xp+1) and
substract (C10) from it. The left-hand side of (C11) gives[

2p + 2
p + 1

]
1

1− xp+1
(C12)

whereas on the right-hand side one obtains

(1+ xp+1)

(1− xp+1)
+

p∑
j=1

([
2p + 2
p + 1+ j

]
−
[

2p
p + j

]
(1− x2p+2)(1− x2p+1)

(1− xp+1)(1− xp+1)

)
1+ xj
1− xj . (C13)

The equality between (C12) and (C13) then follows as a consequence of the identity([
2p + 2
p + 1+ j

]
−
[

2p
p + j

]
(1− x2p+2)(1− x2p+1)

(1− xp+1)(1− xp+1)

)
1+ xj
1− xj

=
([

2p + 1
p + j

]
−
[

2p + 1
p + j + 1

])
1+ xp+1

1− xp+1

and this completes the proof of (25).
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