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Abstract. We calculate exactly the diffusion constant associated with the fluctuations of the
current for the partial asymmetric exclusion model on a ring with an arbitrary number of particles
and holes. We also give the diffusion constant of a tagged particle on that ring. Our approach
extends, using the deformed harmonic oscillator algebra, a result already known for the fully
asymmetric case. In the limit of weak asymmetry, we extract from our exact expression the
crossover between the Edwards—Wilkinson and the Kardar—Parisi-Zhang equatidns i
dimensions.

1. Introduction

The one-dimensional asymmetric exclusion process (ASEP) is a lattice version of
the Kardar—Parisi-Zhang (KPZ) equation [1-3]. It has been extensively studied by
mathematicians [4-9] and physicists [10-20] as one of the simplest examples of a system
out of equilibrium. The process describes particles that hop independently with hard-core
exclusion along a one-dimensional lattice with a bias which mimics an external driving
force. It is a simple case of a driven lattice gas [21] related to the hopping conductivity
of superionic conductors [22] and to queuing problems [23]. One can also map it on the
problem of directed polymers in a random medium [2, 3]1n+ 1) dimensions.

In the steady state, all the configurations of the exclusion model on a periodic lattice
have equal probabilities [24]. This corresponds to the fact that the stationary measure of the
one-dimensional KPZ equation is the Brownian ‘free-field’ measure [25]. The calculations
of equal time correlation functions in the steady state are therefore very easy.

Unequal time properties, even in the steady state, are much more difficult to obtain
[26,27]. The gap between the largest two eigenvalues of the master equation that governs
the time evolution of the ASEP has been computed by the Bethe ansatz [28-30] gi2ing 3
for the dynamical exponent of the one-dimensional KPZ equation. A different approach
based on a matrix ansatz [31-34], initially used for the steady state of systems with open
boundaries, has been extended to obtain some unequal time correlation functions like the
diffusion constant of tagged particles on a ring [35] or the fluctuations of the current of a
chain with open boundaries [36].

In the present paper we give the exact expression of the fluctuations of the total current
through a bond for the partially asymmetric exclusion process on a ring. These fluctuations
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1032 B Derrida and K Mallick

grow linearly with time and the constant of proportionalitycan be interpreted as a diffusion
constant. Up to a simple factof is also the diffusion constant of a tagged particle on a
ring.

Our formula of A gives in particular the scaling function describing the crossover
between the linear Edwards—Wilkinson (EW) model [37] and the nonlinear KPZ equation
for the fluctuations of the height of a growing interface.

Let us first recall the dynamics of the one-dimensional exclusion model on a periodic
lattice of L sites with P particles andH holes (withL = P + H). Each site (1 <i <L)
is either occupied by a particle;(= 1) or is empty ¢, = 0). The lattice has periodic
boundary conditions meaning that= i + L. The system evolves according to a stochastic
dynamical rule: during each infinitesimal time step the only transitions allowed for the
bond(i,i + 1) are

10— 01 with rate 1
01— 10 with ratex. (1)

The parameter is positive and it measures the strength of the driving force. xFer 1
the system is symmetric whereas foe= 0 (or x = 00) it reduces to the totally asymmetric
case [35].

In the long time limit, the system reaches a steady state in which all configurgtions
have the same weight [24]

-1
_(P+H _ P'H!
P(C)—( P > —m- (2

Here we consider the current through a ‘marked’ bond, for instance the tdarid. If Y,

is the net number of particles having crossed that bond between time 0 and (iieethe
number of particles having crossed that bond from left to rightusthose having crossed
from right to left),

1
lim ;(Y,) - J ()
where the expression of the steady state curdefdllows easily from (2)
PH
J = (1 — x) (4)

(P+H)(P+H-1)
In a similar way one expects (and in fact one can prove [36]) that in the long time limit
(Y2 —(r)?
t
The main result of the present paper is the following exact formula
1-x) o 14" PH2(H!)?
a=2 370 g el (PY2(H!)
L(L—1) 1—x" (P +n)(P —n)(H +n)(H —n)!

— A. (5)

(6)

n=1
for the fluctuations of the current through a bond on a ringLosites with P particles
and H = L — P holes (here, we use the convention that= oo for k < —1 so that
the sum (6) has only a finite humber of terms with no contributionsfor min(P, H)).
Sections 2, 3 and 4 are devoted to the derivation of (6) and in section 5, we will see how
this expression (6) leads far close to 1 to the crossover between the symmetric process
and the asymmetric process, i.e. between the EW and the KPZ equations [30, 38].

The knowledge ofA also gives the diffusion constant of a tagged particle on a ring. If
one callsX, the position of a tagged particle (which is, in all respects, equivalent to the
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other P — 1 particles), this position fluctuates about its average? — (X,)2 >~ Awg] and
the corresponding diffusion constaft,g is related toA by
H+ P\
Atag - A < P ) .
This follows from the fact that, due to the hard core repulsion, all particles perform exactly

the same number of rotations Y,/ P and that each time a particle performs a rotation it
covers a distancél + P.

2. The master equation

In this section, we recall [35, 36] how, in the calculationff the master equation which
governs the dynamics can be reduced to a syste(ﬁ}d’f) inhomogeneous linear equations.

Let us denote byP,(C,Y) the probability of finding at timer the system in a
configurationC of particles and withY, = Y (Y; is the algebraic number of particles
having gone through the marked bond between time 0 and f)fm&he master equation
that governs the time evolution df,(C, Y) has the following form

d
&PZ(C’ Y) = Z MO(Ca C/)PZ(C/’ Y) + Ml(C7 C,)PI(Clﬂ Y - 1) + M—l(cv C,)PI(C/’ Y + l)
C/

- [ > Mo(C'.C) + Mi(C'.C) + M_1(C', C)} P(C,Y) @)
=

where My(C,C’) is the rate of transition from a configuratiah to a configurationC’
obtained by moving a particle that does not cross the marked Bapd, C’) (respectively
M_1(C, ")) is the rate of transition from a configuratiédhto a configuratiorC’ obtained
by moving a particle that does cross the marked bond in the positive (respectively negative)
direction.

Multiplying both sides of (7) byY or Y2 and summing ovet andY leads to the
evolution equation for the first two moments Bf

d / ! /
4= %;[Ml(c,c ) — M_1(C, CH]p/(C) ®)

d
(Y2 =2 [Mi(C,C) — M_1(C,CN]gi(C) + Y [Mi(C,C)) + M_1(C.CH]p(C)  (9)

dr c.c c.c
where

p@ =) PCY)  q@=) YPRCY).
Y Y

It has been shown [35, 36] that in the long time lipit(C) and ¢,(C) have the following
asymptotic behaviour:

p:(C) = p(C) q:(C) — Jtp(C) — r(C). (10)
If one substitutes the asymptotics (3), (5) and (10) in (8) and (9) one finds
J =Y [Mi(C.C)) — M_1(C.C)]p(C) (11)
g

which allows one to recover (4), and as

. [d d(r;)
A = lim [<Y2> -2 th(C):| (12)

t—00 dt 4 C
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one finds

PH ! 4 !
A= (1+x)(P+H)(P+H_1) +2§[M1(C,C)—M_l(C,C)]r(C)—ZJXC:r(C).

(13)

Thus to calculateA we need to know-(C). Multiplying both sides of equation (7) by
Y and summing over gives the time evolution of, (C). After substituting the asymptotic
behaviour (10) in the expression thus obtained, one finds that(hesatisfy the following
system of linear equations

Y ME.CHrE) - (Z M, C>)r<<3> = Jp(C) — Y _[Mi(C,C") — M_1(C,CN]p(C))
c [ c
(14)

whereM = M, + My + M_,. Hence, in order to computa from (13), one has to solve

the system (14). This is done in section 3, where t{® solutions of (14) are obtained
using a matrix ansatz. Then one has to perform the two sums which appear in (13) and this
is done in section 4.

3. The matrix method

The method we use to solve (14) is an extension of what was done in [35]. We associate
with each configuratiorf a product of operators. For brevity, the product of operators
associated with configuratian is also denoted b¢. In the product there ar@ operators
representing particles, which we note By and H operators representing holes, which we
denote byE. Thus

C=||luD+A-7)E] (15)

L
i=1
with ; = 0 if site i is empty orz; = 1 if site i is occupied inC.

Assume that the operator3 and E satisfy [31, 32, 39, 40]

DE —xED = (1—x)(D + E) (16)
or if we introduces ande such that

D=1+ and E=1+¢ a7
thens ande satisfy the deformed harmonic oscillator algebra [41,42], namely

de —xed =1—x. (18)
Using (17) and (18) repetitively, one can always re-orderetlad § and write (15) as

C=> A(C:im,n)e"s". (19)

m,n

This defines the coefficient$(C; m, n). In appendix A we show that if(C) are given by
r(C) =Y AC;m,n)r(m,n) (20)
with
r(m,n) =0 if n £2m
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and

n

) 1
r(n,n)=—(P—ItH) Yo (21)
i=1

thenr(C) are solutions of (14).

4. Calculation of the diffusion constant

The expression (13) ok can be rewritten

PH , ,
A=1+x) FPrEETE-D + 2;[r(EC D) — xr(DC'E)] — 2J ;r(C) (22)

where the sum ove?’ is over all the configurations witk — 1 particles andd — 1 holes and
the sum over is over all the configurations witl® particles andd holes. The calculation
of the two sums which appear in (22) is the last difficulty we have to overcome to obtain
A.
By subtracting (A9) from (A8) one can see that

2[r(EC'D) — xr(DC'E)] = 1 —x)[r(DC) +r(C'D) +r(EC) +r(C'E)] — 1+ x)p(C)
and using this relation into (22) leads to a simpler formulaor
A=@1-x)) [r(DC) +r(CD)+rEC)+rCE)]-2]) rC). (23)
1 C
As explained in appendix B, using generating functions and the fact (Gatis linear, the

two sums which appear in (23) can be expressed in terms of the se&lérs €)%), and
this leads to

min(P,H)
- (P + H)! [PH — (P + H)]
A=20-x) ; @DHN(P —DI(H = D! (P + H)(P+ H - 1)

r(( + e)?). (24)

Lastly, ther((8 + €)%) are shown in appendix C to be given by

-2 1
an_ (P+H 20\ 14"
(8 +e) )_—( » ) Z(H—n)l_xn (25)

n=1

so that (24) becomes
20-x) (P+H\ME 14 "ED (P + B[P + H) — PH]
L(L-1 < P ) —~ 1-x" Z (P-DNH-DII—m'I+n)
(26)

If we replace [(P + H) — PH] by n®>+ (I —n)(I +n) — (P —1)(H —1) in (26), we obtain
three terms

min(P,H) (P + H)[I(P + H) — PH] B 2min(P,H) (P + H)!
&~ (P-DIH-DII—m!d+n)! &= (P—-DIH-DII—m!l+n)
min(P,H) |
N (P + H)!

Z:;l (P—DVH -0 —n—D'0 +n— 1)

min(P,H) (P—I—H).'
(P—=1-—DIH-1-D'A —n)'I +n)"

I=n



1036 B Derrida and K Mallick

The last two terms cancel (by just shifting the variablgy one in the last sum); moreover,
using the following identity

min(P, H) (P + H)! _(P+H)<P+H>

(P=DVWH-D'I—m)!d+n)! \ P+n H+n

I=n
(which can be proved by calculating the coefficient ©f~#y=2" in both sides of
GHzt+y+y HPHH = . + A + z71y"HP+H), one ends up with our final
expression forA
1-x) m‘%’”nzlﬂﬂ (PY2(H!)?
L(L—1) 1—x" (P +n)/(P —n)!'(H +n)!(H — n)!

(which is identical to (6) with the convention thét p)! = oo for p > 1).

n=1

5. Scaling form and crossover between the EW and the KPZ equation

From (6), we can find the scaling form of the diffusion constant when the Lipé the
system becomes large and the asymmetry becomes weak 1). If we write p = P/L,
1—p=H/L andx = exp(— f) with f small (hencef ~ 1— x), we obtain with the help
of the Stirling formula

A~2f 2coshnf/2ex< —n? ) @7

>~ — n .
L2 4 sinhnf/2 Lo(1—p)
If we choose a scaling such th#t~ L=Y2, or more precisely if we defing by

fNLp(1—p)

p=""5 (28)

one finds that (27) becomes, in the lindit— co, f — 0 with fixed ¢

4p(1—p) [°° 2 2

A ————° dy exp(—y*) 29

I ¢0 y p(ytamwy) (29)

and this confirms the scaling form suggested in [43] by a perturbative expansion around
x =1.

We are going now to see how our exact result (29) for the exclusion model can be
re-expressed in terms of the KPZ equation. The exclusion model can be mapped onto a
growth process [44] i1+ 1) dimensions: one defines for each site heighth; (r) at time
t by

hi(t) = hi—1(t) = 1 - 27;(2) (30)
and the stochastic dynamics of the exclusion model induces a growth rule for the heights
h;(t). Namely, when a particle jumps from siteto sitei + 1, the heighti; (¢) increases
by 2, and when a particle jumps from site- 1 to sitei, the heighti; () decreases by 2.

Hence, random jumps of particles mimic a stochastic deposition—evaporation process. With
this mapping, the height, (¢) at timet is the integrated current through the bofid 1)

hi(t) — hy (0) = 2. (31)

Due to the conservation of the total number of particles in the exclusion process, we have
tilted periodic boundary conditions for the heights (obtained by summing equation (3p) on

hipr (1) —hi(t) = (1—2p)L =«L (32)
where the parameter = 1 — 2p represents the tilt.
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In the continuum limit wheré becomes a continuous variakjethis growth model is
expected to be described by the KPZ equation

ah 2h A [0h\?
AL t 33
by v812+2<8z) +n(z, 1) (33)

with tilted boundary conditionsh(z + L,t) = h(z,t) + «L).
In (33), n(z, 1) is a Gaussian white noise with zero mean and covariance

(n(z,Hm', 1)) = Ds(z — 28t —1'). (34)

We recall [45] that in order to be well defined the KPZ equation contains an implicit short

length cut-off; usually equation (33) is rewritten in Fourier space and only modes with a

wavenumber less than a ultraviolet cut-off are retained. Here we shall take this cut-off as
equal to 1.

If the growth model is well described by the KPZ equation [46], one should be able to
express the coefficient®, v, 1) in (33) in terms of the parametersand p of the exclusion
process. This can be done [47] by matching some physical quantities that can be calculated
exactly in both models.

For the discrete growth process (30) the stationary distribution of the heights differences
is given by (2). Therefore, if K j —i <« L, we have in the long time limit

(Thy = hi?) = (b = hi)? = 4p(L = p)(j — D). (35)

The fluctuations of the mean height of the interface for the symmetric progessl) are
well known [24] and they can be computed from (29) by taking: 0. Then

8o(1—
{[he(®) = h(O]%) = (hr(t) — hi(0))? = 4[(V) — (¥})?] =~ Mr. (36)
Finally, from the formula for the current (4) and (31), the speed of the interface is
L 1-«% L
Yo 20 -vpa-p T =a-0 S0 (37)

L-1
wherex is defined in (32).

The stationary measure of the KPZ equation is known [25] (it is Gaussian and does
not depend on the nonlinearity coefficient Therefore, all the equal-time averages in the
stationary state can be computed. For instance, one obtains that in the long time limit the
fluctuations of the height difference between two poitandy such that I« y —x < L
are given by

([h(y, 1) = hx, D]?) = (h(y, 1) — h(x,0))? = fv(y—X)- (38)

The fluctuations of the mean height of the interface in the linear ¢ase 0) can also be
explicitly computed by just integrating (33) on the range Q_.toOne obtains

([h(L,t) — h(L,0)]% — (h(L, ) — h(L, 0))2 ~ IL)z. (39)

The coefficienth of the nonlinearity is related to the dependence of the growth rate on the
tilt [45]; this can be seen by imposing a tilt to the interfdog, t) — h(z,t) + xz and
computing how the average speed = (dh/dt) for an infinite system varies with; one
obtains that

9200
o O =1 (40)
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It should be noted that to obtain a finite expression for the spgedne has to introduce a

short length cut-off. However, the second derivative (40) does not depend on this cut-off.
It is now possible to establish a correspondence between the KPZ equation and the

exclusion model by comparing expressions (35)—(37) with expressions (38)—(40):

D =8p(1-0p)
v=1 (41)
A=—(1-—x).

Remark It has been shown [48] that the finite size correction to the growth velocity is
given by

DA

4L

to the first order in 1L for the KPZ equation. If this finite size correction is extracted from
(37) the following relation is obtained

Dx

—ﬁ =21-x)p(1- P)*

which confirms (41).

VUV — U = —

Let us now consider the fluctuations of the height abovelsfa the general asymmetric
growth process. We define

W(L, 1) = ([hp(t) = hp (0)]?) — (hp(1) — hp () = 4[(Y7) — (V)?].  (42)
To compute the same quantity from the KPZ equation, one can use dimensionless

variables [3, 49] obtained by rescaling time, space and height as follows:

Vo v3

V
=T = Z h=_H. 43
4D2 ‘T y (43)
With these rescalings, the KPZ equation does not contain any explicit parameter any more
OH 02H 1 (0H\?
— =+ | = Z, T 44
=5y ae (44)

andn(Z, T) is a Gaussian white noise with zero mean and covariance
n(Z, Tn(Z',T") =8(Z - ZN(T - T.
It is then possible to write, just by dimensional analysis,
W(L,1) = (”)zw<m,m> D (m,”) (45)
A V3 Vo L 3 T L2

where F is a scaling function characteristic of the KPZ equation.
For a finite systemW is linear in time in the long time limit. This means that the
function F does not depend on the variable/L? any more, so that

MDL vt
F (3, ”)  F(g,00)  whens — oo (46)
v L2
. A2DL
with g = . (47)

3
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The scaling functiorF (g, co) measures the fluctuations of the height in the KPZ equation as
a function of the dimensionless variaklevhich characterizes the strength of the nonlinearity
in the KPZ equation. Hence, in the long time limit

D
W(L,1) =~ F(g, 00). (48)
Using (41) one finds that
A2DL
g=—73 =81-x’p(1-pL=3%" (49)

where the variabley has been defined in (28). If we compare (49) to (29) we obtain for
the scaling functionF (g, co)
2

Y . 50
J8//32)y) 0)

ﬁ/m 2
F = d J—
(g, 00) 22 Jo y exp(—y )tanh((
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Appendix A. Proof that equations (19), (20) and (21) solve (14)

In this appendix, we show that whénande satisfy (18)
Se —xed=1—x (A1)
r(C) given by equations (19), (20) and (21) are solutions of (14).
Trying to extend the solution given in [35], we make the hypothesis i@t will
be linear functionals on the algebra generated by 1 (the identity oper&toand E (or

equivalently by 1,§ and¢). This means that for arbitrary numbeks and A, and for
arbitrary operator$3; and B, (consisting of sums of products @fs andEs), one has

r(A1B1 + A2B2) = Ayr(B1) + Aar (B2).
As a consequence, one has from (16)

V(BlDEBz) — xr(BlEDBz) = (1 — X)[F(BlDBz) + V(B]_EBz)]. (A2)
Another consequence of the fact th&f) are linear is that if

C=> AC:im, n)e"s" (A3)
then

r€) = A(C:m.n)r(e"s"). (A4)

Note that the quantities; (P, H) defined by
aw(P, H) =Y AC:m,n)8n (A5)

do not depend og itself but depend only on the numbeér of particles andd of holes in
C:

(A6)

aw(P, H) = (Zti)
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(This can be easily shown by choosifiy= 1+ z~! and E = 1+ z wherez is a number,
that iss = z~! ande = z. For this very simple choice} ande satisfy (A1) and, as with
this choiceD and E commute, (A3) becomes

L+ HA+ )" =D AC;m,m" ™"
which leads immediately to (A6).)

By using the algebra (16) and (A2) the system (14) that we have to solve reduces
to one of the following four cases depending on the occupation numbers of the two sites
surrounding the marked bond (the rule (A2) generates simplifications in the bulk similar to
those described in [32]):

e Forry =1andr, =1 (i.e.C = DC'D, with P — 2 particles andd holes inC’)

Jp(€) = (1 —x)[r(DC) —r(C'D)]. (A7)

e Forry =1andr, =0 (i.e.C = DC'E, with P — 1 particles andd — 1 holes inC’)

Jp(DC'E) — p(EC'D) = r(EC'D) — xr(DC'E) — (1 — x)[r(DC') + r(C'E)]. (A8)

e Forry =0andr, =1 (i.e.C = EC'D, with P — 1 particles andd — 1 holes inC’)

Jp(EC'D) + xp(DC'E) = xr(DC'E) — r(EC'D) + (1 — x)[r(EC") + r(C'D)]. (A9)
e Fort; =0 andr, =0 (i.e.C = EC'E, with P particles andd — 2 holes inC’)

Jp(C) =1L —-x)[r(C'E) —r(EC)]. (A10)

A simple consequence of (Al) is that for > 1
Je" —x"e"§ = (L—x")e" Tt 8" —x"es” = (1—x")8" " (ALl)
Then if one defines
s(m, n) = r(e™s") — r(emls"tt (A12)

one obtains by substituting (A3) and (A4) into (A7)—(A10), and by using (2)
e for C’ having P — 2 particles andd holes

-1
J<PJ;,H> = (1—x);A(C’;m,n)(l—xm)s(m—l, n) (A13)

e for C’ having P — 1 particles andd — 1 holes

1
J -1 <P _;H> =— ZA(C’; m, {1 — x""* 2 s(m, n) + (L — x™)s(m — 1, n)

+A—-—x"sm,n -1 +xAL—-x"HYA—-x"s(m—1,n—1)} (A14)
e for C’' having P — 1 particles andd — 1 holes

-1
J+x) (P _; H) = ZA(C/; m, ){(L = x""*2)s(m, n) + x(L — x™)s(m — 1, n)

+x(1— x")S(m, n—D+xA—-—x"HA—-x"s(m -1 n— 1)} (A15)

e for C’ having P particles andH — 2 holes

-1
1<P;H> =(1—x) Y ACm. m)(L—x")s(m,n —1). (A16)

m,n
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We are now going to show that the choice (21) fd@m,n) = r(¢™8§") does solve
(A13)—(A16). From (A12) one obtains

ﬁ Sn.m (Al?)

P+H\? 1
P 1

s(m,n)=r(m,n) —rim+1Ln+1 = (
and (A13)—(A16) become using (A5)

J(P—;H)z(l—x)al(P—Z,H)

P
—a_1(P—-1,H-1)
(J—i—x)(P—;H) =A+x)agP -1, H—1)+xa(P—-1,H—-1)
+xa_(P—-1,H-1)

J<P+H) — (1—x)a_y(P.H —2).

(J—1)<P+H>:—(1+x)a0(P—1,H—1)—a1(P—1,H—1)

P

These equalities follow easily when the explicit expressions (4) and (A6) afd of the
a; are used. This proves that equations (19), (20) and (21) solve (14).

Appendix B. Calculation of the two sums which appear in (23)

The sum}_. (C) over all the configurations with fixed numbepsof particles andH of
holes is the coefficient of” 1 in the generating function((AD+pE)?+). AsD = 146
andE = 1+ ¢, one can write

piiy _ N (P+H P+H—k k
r(GD+pE) = (0T ) G ™ (G + ). (BL)
k=0

From (21) where the expressions idin, n) = r(e™§") are given, we know that the only
non-zero terms in-((A8 + we)*) are those that contain the same numbes @ind of e.
Consequently, in (B1), the only non-zero terms corresporideeen. Therefore, fok = 2/
one has (A8 + ue)?) = (aw)'r((8 + €)?).

Formula (B1) then becomes

P+H

r(AD+pE) =" %" o > A4 w2 W) r (6 + €)?) (B2)

E[(P+H)/2] <
=0

where E[(P + H)/2] is the integer part of P + H)/2. From (B2) the coefficient of.” /!
can be extracted easily:

min(P,H)
Sro= Y <P;H><P4;fi;21)r((a+e)”). (B3)

C 1=0

In a similar manner, the terfn .. [r(DC")+r(C'D)+r(EC)+r(C'E)] is the coefficient
of AP~1uH~1 in the generating function

(D + wE)12(D + E)) + r((D + EY(D + pE)" 172,
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This expression can be written

PHH-2
S (") 0w a0 4 e G + e 6+ €)
k=0

+7r((8 + €)(A8 + ne)X)). (B4)

The coefficient ofa’~*u#~1 can be extracted from the first term on the right-hand side
of (B4) exactly as above. As for the two remaining terms, we see that the only non-zero
terms inr((A8 + ne) (8 + €)) and inr((8 + €)(A8 + ue)*) correspond tk odd; one has

for k = 21 — 1, using the same argument as above

(8 + ne)? 1S +€) = A r (8 + 2718 + A (8 + €)% te) (B5)
and
r(S+ &)X+ ue)?™) = A ur G + 0 + M Lr(e (8 + )7, (B6)
We now use the identities
red + )%™ = r(6 +€)?719) (B7)
r@@E+e?™hH =r(6+e)? ) (B8)

(which follow from the fact that using (18) one can always writ¢ + )¢ =
Yo alk;m,n)ems" with symmetric coefficientsa(k; m,n), that is a(k;m,n) =
a(k; n, m)) and rewrite the last two terms in (B4) as

(8 + ue)? 2GS +€) +r(B+ )8 + ue)®™H = W + A Hr s + )%). (B9)
Now the calculation can readily be completed and we obtain

> [r(DC) +r(C'D) + r(EC)) + r(C'E)]

Cl

_min(P—Zl,H—l) 4 P+H-2 P+H-21-2
= 2] P—-1-1

1=0
n (P;rli11_2> <Ptf£;21> }r((5+e)2’). (B10)

Substituting (B3) and (B10) in (23) leads to the expression (24) of the diffusion constant
in terms of the scalars((§ + €)%).

Appendix C. Proof of identity (25)

From the deformed harmonic oscillator algebra (18)
Se —xed=1—x (C1)
and its consequences (All), one can show by recursiondhak)” can be written as

E[n/2] n—2p

(E + 8)” — Z QZ_zp(x) Z |:7’l —12p:| Ei(sn—ZF—i (Cz)
p=0 i=0

(by re-orderings and$) whereE[n/2] is the integer part of /2, the polynomialsQ} satisfy
the recursion formula

) = 0F () + A —xHor (x)
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(with Q,‘j = &¢.0) and the deformed binomial coefficients (called Gaussian binomials) are

defined by

_”] A=A —xmhH @ —xn
k] A—xHA—xFDH . A-x)

These Gaussian binomials satisfy identities similar to those of usual binomials

RN
i]=[a%]

We adopt the convention thaf]= 0 whenevemn < 0 ork > n.
Formula (C2) is valid for any choice of and ¢ that satisfies the algebra (C1). In
particular, one can chooge= z ands = 1/z wherez is a real variable. Then (C2) reduces

to
E[n/2] n—2p —n . 2p st
n __ n i+2p—n
CHY" =2, Qo@D | }z ’ (C3)
p= = L

and by identifying the coefficients of the powerszbn both sides of (C3) one obtains

E[n/2]
() Ean@@>

If niseven = 21) the preceed

fn—2p]

. for0<j <n. c4
i ] j<n (C4)

ing formula becomes

[ 2p :
<j<
Q+J) E:Q@@)p+j] for0< j <.

We can now use the ordering identity (C2) to compute + §)%)

r«e+5ﬂ)—§:Q@uo§:[ }r@ab')

which becomes using (21)

r((e +8)%) =

SIS o D orecs

-1
P+HY\ )= j=1
P
Our goal is to prove (25)
i 14 x/
1—xi \U + Jj

( P )2ﬂ

which can be rewritten using (C5) as

r(6+e)?) =

~.

-1 L14xi 2
(G+e?) = : Q”({ P.]
e <P+H>2;1—m; 2 p+j
P
B 1 1 - )4 2p l+x]
QZ”(X)Z[erJ} 1—xi

(C5)

(C6)

(C7)

(C8)

(C9)
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So far we have proved (C7) and we would like to prove (C9). We are now going to
show that (C7) and (C9) are indeed the same due to the following identity on deformed

binomials
2p 2p |1+x/
= C10
[1’]; 1-x/ Z[Pﬂ} 1—xi’ (€10
This formula can be established by induction pn The casep = 1 can be checked
directly. If the formula is true forp, we are going to show that it remains true for- 1:

1 +1 i

2p+2185 1 & 2p+2 14/
= : . ci11
[p+1};1—x1 ; p+14+j|1—x (C11)

Let us multiply (C11) by the factofl — x2’+2)(1 — x?»*1) /(1 — xP*1)(1 — xP*1) and
substract (C10) from it. The left-hand side of (C11) gives

2p+2 1
[P+1i|l—xl’+1 (c12)

whereas on the right-hand side one obtains
1 p+1 )4 1— 2p+2 1— 2p+1 1 J
(1+x )+Z<[ 2p+2.:|_|: 2p':|( xPT (L —x )) +xl (C13)
= 1—x/

(1 — xpr+1) p+1+j pH+Jj| (1—xpPtly(1—xrtl

The equality between (C12) and (C13) then follows as a consequence of the identity

2p +2 2p 1- x2p+2)(1 _ x2p+l) 14+ xJ
p+1l+j p+ij| A—xrtH@A—xrtl) J1—xJ

_(l2p+1] | 2p+1 1+ xPtt
N p+J p+j+1|)1—xrt1

and this completes the proof of (25).
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